Dämpad svängning

Edampadsvangn2.jpg

En kropp med massan m svänger kring sitt jämviktsläge. Den påverkas dels av en återförande kraft från fjädern:
-k·x, där k är fjäderkonstanten och x avståndet från jämviktsläget; och dels av en dämpad (friktions) kraft som är proportionell mot hastigheten: -b·x’.

Newtons andra lag (F=ma=mx’’) ger differentialekvationen:
m·x’’+b·x’+k·x=0

Simuleringen undersöker denna ekvation. Du kan välja olika värden på variablerna, och begynnelsevillkoren (x och x’’ vid t=0) väljs i fönstret till vänster. När du trycker på "»", så visas en animering av rörelsen.

Påtvingat svängning I

Eforcedgeneral.jpg

En kropp med massan m svänger kring sitt jämviktsläge. Den påverkas av tre krafter. En återförande kraft från fjädern: -k·x, där k är fjäderkonstanten och x avståndet från jämviktsläget; en dämpad (friktions) kraft som är proportionell mot hastigheten: -b·x’ ; och en yttre påtvingad kraft: A·cos(ωt).

Newtons andra lag (F=ma=mx’’) ger differentialekvationen:
m·x’’+b·x’+k·x=A·cos(ωt)

Simuleringen undersöker denna ekvation. Du kan välja olika värden på variablerna, och begynnelsevillkoren  (x och x’’ vid t=0) väljs i fönstret till vänster. När du trycker på "»", så visas en animering av rörelsen.

Du kan välja att visa den homogena lösningen ("Transient" =övergående; eftersom den homogena lösningen har en dämpningsfaktor e-r·t där r >0 och därmed bli liten när t är stort), den partikulära ("Steady State" eftersom det är den som blir kvar efter lång tid) eller den exakta lösningen.

Påtvingat svängning II

Eforcedoscilation.jpg

En kropp med massan m=1kg svänger kring sitt jämviktsläge. Den påverkas av tre krafter. En återförande kraft från fjädern: -k·x, där k är fjäderkonstanten och x avståndet från jämviktsläget; en dämpad (friktions) kraft som är proportionell mot hastigheten: -b·x’ (nedre delen av uppställningen); och en yttre påtvingad kraft genom att fjäderns hängpunkt svänger enligt h(t)=cos(ωt). Detta resulterar till en påtvingad kraft: k·h(t)= k·cos(ωt).

Newtons andra lag (F=ma=mx’’)ger differentialekvationen:
m·x’’+b·x’+k·x=k·cos(ωt)

Simuleringen undersöker den partikulära lösningen
P(t)=c·cos(ωt)+d·sin(ωt)= A·cos(ωt+φ)
(Efter lång tid dör den homogena lösningen ut eftersom den har en dämpningsfaktor:
e-rt, och kvar blir bara den partikulära lösningen).

I fönstren längst upp till höger visas A och φ som funktion av ω. Det intressanta är att vid ett visst värde på ωA=√(k/m-b2/2m2) så ökar amplituden A kraftigt. Vi har fått en resonans. Ju mindre dämpningsfaktorn b är desto mera påtagligt blir resonansfenomenet.

Du kan välja olika värden på variablerna b, k och ω. När du trycker på "»", så visas en animering av rörelsen.

Muon sönderfall

Relativity Muon Decay
Du kan studera muonsönderfall. Du hittar också flera andra simuleringar inom relativitetsteorin.

Tunneleffekten

Fy3QuantumMechanicsTunneling1.jpg

Du kan undersöka tunneleffekten.
OBS! Funkar det inte med Run Now! prova med Download
Totalt sökresultat: 10
×
×