Påtvingat svängning I
2:a ordningens differentialekvationer
En kropp med massan m svänger kring sitt jämviktsläge. Den påverkas av tre krafter. En återförande kraft från fjädern: -k·x, där k är fjäderkonstanten och x avståndet från jämviktsläget; en dämpad (friktions) kraft som är proportionell mot hastigheten: -b·x’ ; och en yttre påtvingad kraft: A·cos(ωt).
Newtons andra lag (F=ma=mx’’) ger differentialekvationen:
m·x’’+b·x’+k·x=A·cos(ωt)
Simuleringen undersöker denna ekvation. Du kan välja olika värden på variablerna, och begynnelsevillkoren (x och x’’ vid t=0) väljs i fönstret till vänster. När du trycker på "»", så visas en animering av rörelsen.
Du kan välja att visa den homogena lösningen ("Transient" =övergående; eftersom den homogena lösningen har en dämpningsfaktor e-r·t där r >0 och därmed bli liten när t är stort), den partikulära ("Steady State" eftersom det är den som blir kvar efter lång tid) eller den exakta lösningen.